Summary of Wakulla Springs Wildlife Monitoring Results
 January, 1997 through December, 2016

by Bob Thompson
Document revised: May 11, 2017
The abundance of 34 species of animals along the 3-mile river boat tour route in the Wakulla Springs State Park has been monitored for 25 years (monthly by park staff from 1992 through October, 2012 and weekly by volunteers since November, 2012). This annual summary presents 20-year (1997-2016) plots and 20-year and 5-year (2012-2016) abundance trends of wildlife in Attachment 1.

Simple linear regression was applied to the monitoring data to identify abundance trends (Attachment 2), using the following two criteria.

Prob(F) The probability of the F statistic was used to identify statistically significant linear relationships between mean annual abundance and year. Relationships were identified as "significant" if $\operatorname{Prob}(\mathrm{F})<0.05$. This indicates there is a 95% or higher likelihood that the apparent linear relationship actually exists.

Plus/Minus Sign of Slope Slope is ' m ' in the regression equation $y=m x+b$. Trends were identified as follows, based on the sign of the slope and the statistical significance of the linear relationship.

Increasing Abundance if the linear relationship was significant and slope was positive.
Decreasing Abundance if the linear relationship was significant and slope was negative.
No Trend if the linear relationship was not statistically significant (i.e. the slope was not significantly different from zero).
Coefficient of Determination $\left(\mathrm{R}^{2}\right)$ The strength of the abundance trend was estimated by the R^{2} regression statistic, a measure of the percent of the variation in mean abundance explained by year. Where the linear relationship was statistically significant, three categories of trend strength were defined as follows: Weak: $\mathrm{R}^{2}<0.30$; Moderate: $\mathrm{R}^{2} \geq 0.30$ and $\mathrm{R}^{2}<0.70$; and Strong: $\mathrm{R}^{2} \geq 0.70$

Table 1. Summary of Trends in Wildlife Abundance, based on Regression of Annual Means

20-year (1997-2016) Trends		5-year (2012-2016) Trends	
Decreasing for 12 animals		Decreased to zero for 6	als (based on 5 -year 2012-
American Alligator	Purple Gallinule	2016 means) American Widgeon	Limpkin
	Snowy Egret	American Widgeon Blue-winged Teal	Limpkin Purple Gallinule
Blue-winged Teal	Wood Duck	Green Heron	Snowy Egret
Common Gallinule Green Heron Limpkin	Yellow-crowned Night-Heron	Decreasing for 2 animals American Coot	Manatee
Increasing for 3 animals Cattle Egret Hooded Merganser	Pied-billed Grebe	Increasing for 2 animals American Alligator	Yellow-crowned Night-Heron
No Trend for 9 animals American Coot Cooter Turtle Double-cr. Cormorant Great Blue Heron Great Egret	Little Blue Heron Manatee Osprey White Ibis	No Trend for 14 animals identified above that decre Anhinga Cattle Egret Common Gallinule Cooter Turtle Double-cr. Cormorant Great Blue Heron Great Egret	well as the 6 animals to zero) Hooded Merganser Little Blue Heron Osprey Pied-billed Grebe Tricolored Heron White Ibis Wood Duck

Note: Of the 34 animals monitored, it was not feasible to identify trends for the following 10 animals because of low abundance: Bald Eagle, Barred Owl, Belted Kingfisher, Black-Crowned Night Heron, Florida Softshell Turtle, Killdeer, Lesser Scaup, Red-Shouldered Hawk, Snake, Spotted Sandpiper.

Monitoring results are sorted in Table 2 from low to high abundance, based on the 2016 annual mean in the eighth column of the table.

Table 2. Abundance of Animals Sorted on the Most Recent (2016) Annual Mean

	15 -year Mean 1997-2011	5 -year Mean 2012-2016	Annual Means During Recent 5 Years					$\begin{gathered} \text { 20-year Trend } \\ (1997-2016) \\ \hline \end{gathered}$	5-year Trend (2012-2016)
			2012	2013	2014	2015	2016		
Limpkin	0	0	0	0	0	0	0	Decreasing	5-year Mean=0
American Widgeon	80	0	0	0	0	0	0	Decreasing	5-year Mean=0
*Blue-Winged Teal	3	0	0	0	0	0	0	Decreasing	5-year Mean=0
Purple Gallinule	1	0	0	1	0	0	0	Decreasing	5-year Mean=0
Green Heron	3	0	1	0	0	1	0	Decreasing	5-year Mean=0
Snowy Egret	2	0	1	1	0	0	0	Decreasing	5-year Mean=0
Osprey	2	1	1	1	1	1	0	No Trend	No Trend
Tri-Colored Heron	2	1	1	1	1	1	1	Decreasing	No Trend
**Cattle Egret	0	10	12	21	16	1	1	Increasing	No Trend
Great Blue Heron	1	1	2	1	2	1	1	No Trend	No Trend
Wood Duck	13	4	4	7	4	4	2	Decreasing	No Trend
Great Egret	3	2	2	1	2	2	2	No Trend	No Trend
*Manatee	3	6	12	8	5	3	3	No Trend	Decreasing
Yellow-cr. Night Heron	3	2	1	2	2	2	3	Decreasing	Increasing
Double-crested Cormorant	2	3	3	2	3	2	5	No Trend	No Trend
Little Blue Heron	5	4	4	4	3	4	5	No Trend	No Trend
*American Coot	48	29	88	40	30	13	10	No Trend	Decreasing
Anhinga	15	12	13	10	12	13	14	Decreasing	No Trend
Cooter Turtle	19	16	15	14	16	20	16	No Trend	No Trend
American Alligator	24	16	14	15	16	16	17	Decreasing	Increasing
Pied-Billed Grebe	12	20	27	20	20	19	19	Increasing	No Trend
*Hooded Merganser	3	12	6	7	13	8	21	Increasing	No Trend
*White Ibis	21	25	25	22	24	23	30	No Trend	No Trend
Common Gallinule	82	37	64	44	33	31	34	Decreasing	No Trend

* Migratory/Seasonal; ** Cattle Egret abundance was extremely low, except during nesting from 2012 to 2014.

Unfortunately, there has been an astonishing decrease in wildlife abundance of four animals (American Alligator, American Widgeon, Common Gallinule, and Wood Duck) over the past 20 years. Although this steep decline in abundance seems to have leveled for the Alligator and possibly leveled during the most recent 3 years for the Common Gallinule, their numbers are much lower than historical levels. Wood Duck abundance continues to decrease. And, except for rare occasional sightings, the Limpkin has all but totally relocated to other aquatic systems in the region.

The appearance of Manatees in the park and their increase in abundance to a peak in 2012 has been amazing. They have had a positive impact on the biological community by grazing on and significantly reducing Hydrilla, an exotic invasive rooted aquatic plant. The subsequent decline in manatee abundance corresponded with the failure of the Hydrilla to recover from grazing during the winter of 2012-2013. That event corresponded to a 75 percent reduction in nitrate loading to the aquifer from the Tallahassee wastewater treatment facilities, beginning in November 2012.

Many thanks to volunteers for spending a portion of their Saturday mornings monitoring wildlife and Bob Deyle for his expert advice and encouragement in the analysis and report writing.

ATTACHMENT 1

PLOTS OF WILDLIFE ABUNDANCE

Important note: Volunteers increased monitoring frequency from monthly to weekly beginning in the fall of 2012. The high density of data points (diamond symbols) on the right side of the 20-year plots is the result of this increase in monitoring frequency.

Legend for plots

- Number of animals (data point) observed during monitoring
\diamond Annual Mean number of animals observed during monitoring
..... Line connecting data points and connecting Annual Means
= - Decreasing Abundance: Linear regression line of best fit for the annual mean number of animals over time with a statistically significant negative linear relationship (negative slope).
= = Increasing Abundance: Linear regression line of best fit for the annual mean number of animals over time with a statistically significant positive linear relationship (positive slope).

Regression The following results (three lines of text) are provided in all "Regression of Annual Mean" plots:

1. $\operatorname{Prob}(\mathrm{F})$
2. Slope of the regression equation $(y=m x+b)$, where m is the slope, b is the y intercept, x is the year value on the horizontal axis, and y is the value on the vertical axis for the annual mean number of animals counted on wildlife surveys
3. Coefficient of Determination $\left(\mathrm{R}^{2}\right)$

AMERICAN ALLIGATOR

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing
Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was strong, with 71.4% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 1.2 American Alligators per year.

Note that a steep decline in abundance occurred from 2001 to 2006. During this time period, the annual mean number of alligators decreased from 37 to 15 (=22 fewer alligators in six years).
Fortunately, abundance has leveled and even increased slightly over the most recent 5 years.

Regression results show an Increasing

Abundance Trend. The linear relationship was statistically significant and slope was positive. Trend strength was strong, with 94.2% of the variation in abundance explained by year. Based on slope, abundance increased by 0.7 American Alligators per year.

AMERICAN COOT

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

No Trend Identified Linear regression was not statistically significant.

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was strong, with 84.6% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 18.3 American Coots per year.

AMERICAN WIDGEON

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 52.7% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 11.4 American Widgeons per year.

Although the annual means from 2011-2016 were zero, American Widgeons are periodically observed in very low numbers.

No Trend Identified: Annual Means Decreased to Zero

ANHINGA

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was weak, with 27.8% of the variation in abundance explained by year. Based on slope, man annual abundance decreased by 0.6 Anhingas per year.
Annual means of the first four years (1997-2000) were higher compared to the latter 16 years (20012016). The range of annual means were 22 to 28 for the first four years and 9 to 14 for the later 16 years.

No Trend Identified Linear regression was not statistically significant.

BLUE-WINGED TEAL

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 52.2% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 0.3 Blue-winged Teal per year.
Although the annual means from 2011-2016 were zero, Blue-winged Teal are periodically observed in very low numbers.

No Trend Identified - Annual Means
Decreased to Zero

CATTLE EGRET

$\underline{\text { 20-year (1997-2016) Plot of Abundance }}$

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression results show an Increasing
Abundance Trend. The linear relationship was statistically significant and slope was positive. Trend strength was weak, with 22.5% of the variation in abundance explained by year. Based on slope, mean annual abundance increased by 0.5 Cattle Egrets per year.
The increase in Cattle Egret abundance from 20122014 was the result of colony nesting on an island in the River.

No Trend Identified The linear relationship was not statistically significant.

COMMON GALLINULE (COMMON MOORHEN)

20-year (1997-2016) Plot of Abundance

$\underline{20-y e a r ~(1997-2016) ~ A b u n d a n c e ~ T r e n d ~}$
Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 53.7% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 2.8 Common Gallinules per year.

SUMMARY

No Trend Identified The linear relationship was not statistically significant.

COOTER TURTLE

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend
$\operatorname{Prob}(F)=0.213$
Slope=-0.16692
$R^{2}=0.085$
$199719992001 \quad 2003 \quad 2005 \quad 2007 \quad 2009 \quad 2011 \quad 2013 \quad 2015$

No Trend Identified The linear relationship was not statistically significant.

No Trend Identified The linear relationship was not statistically significant.

DOUBLE-CRESTED CORMORANT

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend
Regression of Annual Means

No Trend Identified The linear relationship was not statistically significant.

No Trend Identified The linear relationship was not statistically significant.

GREAT BLUE HERON

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend
Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

No Trend Identified The linear relationship was not statistically significant.

No Trend Identified The linear relationship was not statistically significant.

GREAT EGRET

$\underline{\text { 20-year (1997-2016) Plot of Abundance }}$

20-year (1997-2016) Abundance Trend
Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

No Trend Identified The linear relationship was not statistically significant.

Periodically Great Egrets nest in small colonies on the islands in the river.

No Trend Identified The linear relationship was not statistically significant.

GREEN HERON

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 69.3% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 0.3 Green Herons per year.

No Trend Identified The linear relationship was not statistically significant.

The number of Green Herons seen in the last 5 years is much lower compared to historical levels.
$\underline{\text { 20-year (1997-2016) Plot of Abundance }}$

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression results show an Increasing
Abundance Trend. The linear relationship was statistically significant and slope was positive. Trend strength was moderate, with 42.1% of the variation in abundance explained by year. Based on slope, mean annual abundance increased by 0.6 Hooded Mergansers per year.

No Trend Identified The linear relationship was not statistically significant.

LIMPKIN

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 34.2% of the variation in mean annual abundance explained by year. Based on slope, abundance decreased by 0.1 Green Herons per year.

No Trend Identified Annual Means Decreased to Zero

Apple Snails, the preferred food of Limpkins, is no longer present in sufficient numbers to support a permanent population of Limpkin. From time to time, one or two Limpkins are seen feeding on mussels.

LITTLE BLUE HERON

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend
Regression of Annual Means

No Trend Identified The linear relationship was not statistically significant.

No Trend Identified The linear relationship was not statistically significant.

MANATEE

Important Note: Manatees were not monitored during wildlife surveys from 1992-2002, 2004, and 2006

20-year (1997-2016) Plot of Abundance

14-year (2003-2016) Abundance Trend

Regression of Annual Means

No Trend Identified The linear relationship was not statistically significant.
Manatees abundance increased steadily from 2009 to a maximum in 2012, grazing on rooted submerged aquatic plants and using the spring-fed Wakulla River as a warm water refuge in the winter. The appearance of manatees was remarkable. Manatees achieved biological control of Hydrilla. The subsequent decline in manatee abundance corresponded with the failure of the Hydrilla to recover from gazing during the winter of 2012-2013. That event corresponded to a 75% reduction in nitrate loading from the Tallahassee wasterwater treatment facilities, beginning in November 2012.

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was strong, with 90% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 2.3 Manatees per year.

OSPREY

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

No Trend Identified The linear relationship was not statistically significant.

No Trend Identified The linear relationship was not statistically significant.

PIED-BILLED GREBE

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show an Increasing
Abundance Trend. The linear relationship was statistically significant and slope was positive. Trend strength was moderate, with 37.8% of the variation in abundance explained by year. Based on slope, mean annual abundance increased by 0.6 Pied-billed Grebes per year.

No Trend Identified The linear relationship was not statistically significant.

PURPLE GALLINULE

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 39.5% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 0.1 Purple Gallinules per year.

No Trend Identified The linear relationship was not statistically significant.

SNOWY EGRET

20-year (1997-2016) Plot of Abundance

$\underline{20-y e a r ~(1997-2016) ~ A b u n d a n c e ~ T r e n d ~}$
Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 42.8% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 0.1 Snowy Egrets per year.

No Trend Identified The linear relationship was not statistically significant.

TRICOLORED HERON

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend
Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was moderate, with 33.3% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 0.1 Tricolored Herons per year.

No Trend Identified The linear relationship was not statistically significant.

WHITE IBIS

$\underline{\text { 20-year (1997-2016) Plot of Abundance }}$

20-year (1997-2016) Abundance Trend
Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

No Trend Identified The linear relationship was not statistically significant.

No Trend Identified The linear relationship was not statistically significant.

WOOD DUCK

20-year (1997-2016) Plot of Abundance

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was strong, with 76.5% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 0.9 Wood Ducks per year.

No Trend Identified The linear relationship was not statistically significant.

YELLOW-CROWNED NIGHT-HERON

$\underline{\text { 20-year (1997-2016) Plot of Abundance }}$

20-year (1997-2016) Abundance Trend

Regression of Annual Means

5-year (2012-2016) Abundance Trend

Regression of Annual Means

Regression results show a Decreasing Abundance Trend. The linear relationship was statistically significant and slope was negative. Trend strength was weak, with 21.6% of the variation in abundance explained by year. Based on slope, mean annual abundance decreased by 0.1 Yellow-crowned NightHerons per year.

Regression results show an Increasing
Abundance Trend. The linear relationship was statistically significant and slope was positive. Trend strength was strong, with 80% of the variation in abundance explained by year. Based on slope, mean annual abundance increased by 0.4 Yellow-crowned Night-Herons per year.

ATTACHMENT 2 Regression Results of Annual Means Used to Identify Trends

The following presents in an abbreviated format the three criteria for identifying abundance trends on page 1.

- $\quad \underline{\operatorname{Prob}(F)}$ Statistically significant linear relationship was identified by $\operatorname{Prob}(\mathrm{F})<0.05$
- Plus/Minus Sign of Slope Abundance trends were identified as follows, based on Prob(F) and the sign of the slope of the regression line

Increasing The linear relationship was statistically significant and slope was positive
Decreasing The linear relationship was statistically significant and slope was negative
No Trend The linear relationship was not statistically significant
Results

	20 year (1997-2016)				5 year (2012-2016)			
Animal	Prob(F)	Slope	R^{2}	Trend	$\operatorname{Prob}(\mathrm{F})$	Slope	R^{2}	Trend
American Alligator	<0.001	-1.16391	0.714	Decreasing	0.006	0.7	0.942	Increasing
American Coot	0.243	-1.29624	0.075	No Trend	0.027	-18.3	0.846	Decreasing
American Widgeon	<0.001	-11.37368	0.527	Decreasing	---	---	---	Means=0
Anhinga	0.0169	-0.55940	0.278	Decreasing	0.368	0.5	0.272	No Trend
Blue-winged Teal	<0.001	-0.34887	0.522	Decreasing	---	---	---	Means=0
Cattle Egret	0.035	0.48797	0.225	Increasing	0.153	-4.2	0.546	No Trend
Common Gallinule	<0.001	-2.83308	0.537	Decreasing	0.079	-7.2	0.695	No Trend
Cooter Turtle	0.213	0.16692	0.085	No Trend	0.332	0.8	0.308	No Trend
Double-cr. Cormorant	0.605	-0.01955	0.015	No Trend	0.164	0.6	0.529	No Trend
Great Blue Heron	0.420	-0.01579	0.036	No Trend	0.308	-0.2	0.333	No Trend
Great Egret	0.803	0.01203	0.004	No Trend	0.559	0.1	0.125	No Trend
Green Heron	<0.001	-0.25940	0.693	Decreasing	0.638	-0.1	0.083	No Trend
Hooded Merganser	0.003	0.58201	0.421	Increasing	0.112	3.1	0.624	No Trend
Limpkin	0.007	-0.08722	0.342	Decreasing		---		Means=0
Little Blue Heron	0.593	0.03459	0.016	No Trend	0.450	0.2	0.2	No Trend
Osprey	0.050	-0.05714	0.197	No Trend	0.182	-0.2	0.5	No Trend
Pied-billed Grebe	0.004	0.56391	0.378	Increasing	0.110	-1.7	0.628	No Trend
Purple Gallinule	0.003	-0.07293	0.395	Decreasing	0.559	-0.1	0.125	No Trend
Snowy Egret	0.002	-0.13233	0.428	Decreasing	0.638	-0.1	0.083	No Trend
Tricolored Heron	0.008	-0.10150	0.333	Decreasing	---	---	---	Means=1
White Ibis	0.731	0.17594	0.007	No Trend	0.328	1.1	0.312	No Trend
Wood Duck	<0.001	-0.88797	0.765	Decreasing	0.266	-0.7	0.383	No Trend
Yellow-cr. Night-Heron	0.039	-0.13233	0.216	Decreasing	0.041	0.4	0.8	Increasing

Manatees were not monitored during wildlife surveys until 2003; hence the long-term time interval in the table below was identified as 14 years instead of 20 years.

	14 year (2003-2016)			5 year (2012-2016)				
Animal	Prob(F)	Slope	R^{2}	Trend	Prob(F)	Slope	R^{2}	Trend
Manatee	0.067	0.48107	0.297	No Trend	0.014	-2.3	0.90	Decreasing

