Sucralose – Literature Review Joshua Shultz 09/29/2021 ## What is Sucralose? - Sucralose is an artificial sweetener 600x sweeter than natural sucrose - Found in foods, beverages, pharmaceuticals, and personal care products - The USA leads consumption ~1,500 T per year - Global consumption has increased 5.1% per year from 2008-2015 and is expected to continue # Chemical Properties of Sucralose - Sucralose is the chlorinated version of sucrose - Chemical formula: C₁₂H₁₉Cl₃O₈ - Sucralose experiences little environmental degradation - 92-97% survives mammal digestion - hydrolysis degradation only occurs in highly acidic conditions - Studies of microbial degradation have been mixed - Estimated sucralose life of ~4 months depending on soil properties - Sucralose is not removed in conventional water treatment Prevalence of Sucralose-Case Study: Zhejiang Province - Found sucralose in all water sources; municipal wastewater > surface water > drinking water - DWTP removed 19.7% of sucralose (advanced processes removed 56.5-85.7%) - But removal processes could create DBPs # Why is Sucralose Important? - Widespread detection of sucralose in water sources has become a concern for some - Sucralose has been approved by the FDA (1998) and many other food safety agencies around the world - Studies have shown that sucralose is poorly absorbed in mammals and does not accumulate in the body over time - Studies have shown sucralose is a relatively safe product, but with rising detection in aquatic environment concerns have been raised - Breakdown of sucralose in WWTPs can lead to an increase in formation of disinfection by-products (DBPs) which have been associated with increased cancer risk ## Safety of Sucralose - Sucralose has been found in the environment in concentration ranging from the ng/l – mg/l - 5 mg/kg body weight per day has been set as acceptable daily intake Table 10 Compounds' half-lives and predicted no effect concentrations (PNEC) for aquatic invertebrates followed by imidacle pesticide registration benchmarks for aquatic life | Compound | Half-life water | PNEC | Reference | | | |------------------------|------------------------------|----------------|--------------------------|------------|--| | Sucralose | > Year | 930,000 ng/L | Tollefsen et al. 2012 | | | | Acetaminophen | Days to weeks | 9200 ng/L | Kim et al. 2007, Table 3 | | | | Carbamazepine | Days to weeks | 31,600 ng/L | Kim et al. 2007, Table 3 | | | | Primidone | Days to weeks | ND | ND | | | | Imidacloprid | Weeks to months | 10 ng/L | USEPA 2017b | | | | US EPA pesticide regis | stration program benchmarks* | | | | | | Compound | Fish (acute) | Fish (chronic) | Invert (acute) | Invert (ch | | | Imidacloprid | > 114,500,000 ng/L | 9,000,000 ng/L | 385 ng/L 10 ng/L | | | ND = not determined ^a U.S. EPA Office of Pesticide Program aquatic life benchmarks (https://www.epa.gov/pesticide-science-and-assessing-pest risks/aquatic-life-benchmarks-pesticide-registration) ### Why is Sucralose Important Cont? - Sucralose is a useful environmental tracer of wastewater - Popularized first in Europe, sucralose has been increasingly used in the U.S since 2009 - Sucralose is just one of many artificial sweeteners has proven usefulness in aquatic studies | CAS no. | ACE
33665-90-6 | CYC
100-88-9 | SAC
81-07-2 | SUC
56038-13-2 | Aspartame
22839-47-0 | Neotame
165450-17-9 | NHDC
20702-77-6 | |--|--|--|---|--|--|---|--| | Structure | HN OH, | HO | C NH | HO HO OH | | \$ tha | # Than | | Molecular
formula | C ₄ H ₅ NO ₄ S | C ₆ H ₁₃ NO ₃ S | C ₇ H ₅ NO ₃ S | C ₁₂ H ₁₉ Cl ₃ O ₈ | C ₁₄ H ₁₈ N ₂ O ₅ | C ₂₀ H ₃₀ N ₂ O ₅ | C ₂₈ H ₃₆ O ₁₅ | | Molecular
weight in
(g/mol) | 163,15 | 179.24 | 183.19 | 397.63 | 294.31 | 378.47 | 612.58 | | Sugar
equivalence | 200 [66] | 30 [67] | 300 [68] | 600 [69] | 160-220 [68] | 7,000–13,000 [70] | up to 1,800 [71] | | Water solu-
bility in (g/L) | 270 (20 °C)
[66] | 1.000 [69],
133 [67] | 4 [69] | 283 (20 °C) [72] | ~10 (25 °C) [73] | 12.6 [74] | 0.4-0.5 [71] | | pK _a ^a | 2.0 [75] | 1.9 [76] | 2.2 [76] | 11.8° [77] | 3.19 and 7.87 [78] | 3.01 and 8.02 [79] | 9.7° [77] | | log K _{ow} ^b
Human
excretion | -1.33 [69]
100 %
unchanged
[66],
mainly
unchanged
[19] | -1.61 [69]
mainly
unchanged [19],
inter-individual
variations in
conversion to
cyclohexylamine
[80] | 0.91 [69]
mainly
unchanged [19] | -1.00 [69]
-0.51±0.05 [72]
>92 %
unchanged [81] | 0.07 [69]
complete metabolic
breakdown into
aspartic acid,
phenylalanine, and
methanol [82] | 2.39 (nonionic species) [77] <2 % [70] (deesterification major metabolic pathway) | 0,75 (nonionic species) [77] complete metabolism by hydrolysis and conjugation is anticipated [83] | | ADI
mg/kg body
weight | 9 (potassium
salt) [84] | 7 [80] | 5 (sodium salt),
3.8 (free acid)
[85] | 15 [86] | 40 [82] | 2 [87] | 5 [83] | ## Sucralose as an Environmental Tracer #### Pros - High environmental concentrations - Highly water solvable and chemically stable - Most WWTP processes remove little sucralose - No known environmental effects #### Cons - Does not discriminate source (i.e septic, treated wastewater, or untreated wastewater) - Long survivability in low mixing conditions can build concentrations - Signal strength depends on human consumption, can vary regionally ## **Environmental Tracer Studies** - Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions -2011 - Evaluation of the artificial sweetener sucralose as a sanitary wastewater tracer in Narragansett Bay, Rhode Island -2019 - Comparison of environmental tracers including organic micropollutants as groundwater exfiltration indicators into a small river of a karstic catchment -2020 - Comparative analysis of nitrogen concentrations and sources within a coastal urban bayou watershed: A multi-tracer approach -2021 # Sucralose in Florida Sampling of water bodies was completed in 2015 as follows Feb-Mar: canals May-Jun: rivers Jul-Sep: streams April-May: large lakes Sep-Oct: small lakes Nov-Dec: unconfined aquifers # Estimated percentage of waters with detectable concentrations The Status Monitoring Network sampling in 2015 monitored 528 sites, Sucralose was detected in all water resources and found in 292/528 *units for area are as follows canals, streams, and rivers = km; lakes =ha, unconfined aquifers = # of wells # Concentration of Sucralose in waters Sucralose concentrations in Florida were found to between 100 to 40,000 ng/l *units of figure in ng/l ## Sucralose in Tallahassee Sucralose has been detected in several ponds around Tallahassee Possible leakage of sewage from older pipes Exfiltration of sewage from pipelines can impair surface and groundwater - Exfiltration is the process of water (sewage) loss out into the environment - Pipeline failures - Bedrock dissolution - Soil undermining - Conditions for Exfiltration - Sewer system failure - Location of failure above local GW table - Hydraulic potential of sewer pipe is higher than hydraulic potential in the surrounding soil ## Tallahassee Sampling | Site Name | Sucralose (ng/l) | | | |---------------------------|------------------|--|--| | Care Pond | 371 | | | | Carter Howell Strong Pond | 85.7 | | | | Cascade Park Pond Inflow | 62.2 | | | | Delvin Pond | ND | | | | John Hancock Pond | 143 | | | | McCord Pond | 153 | | | | Waverly Pond | ND | | | Sampling preformed in Aug 2021 # General Take-Away - Sucralose is a man made contaminate that is increasingly detected in waters affected by urban processes - Sucralose is a useful, highly used environmental tracer - Sucralose can be used to answer many questions, but may require other tracers for more specific information - More studies of sucralose are needed to - Investigate environmental effects - Further understand relationships with environments and different environmental tracers